Efficient speech recognition using subvector quantization and discrete-mixture HMMs

نویسندگان

  • Stavros Tsakalidis
  • Vassilios Digalakis
  • Leonardo Neumeyer
چکیده

This paper introduces a new form of observation distributions for hidden Markov models (HMMs), combining subvector quantization and mixtures of discrete distributions. We present efficient training and decoding algorithms for the discretemixture HMMs (DMHMMs). Our experimental results in the airtravel information domain show that the high-level of recognition accuracy of continuous mixture-density HMMs (CDHMMs) can be maintained at significantly faster decoding speeds. Moreover, we show that when the same number of mixture components is used in DMHMMs and CDHMMs, the new models exhibit superior recognition performance.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Noisy speech recognition by using output combination of discrete-mixture HMMs and continuous-mixture HMMs

This paper presents an output combination approach for noiserobust speech recognition. The aim of this work is to improve recognition performance for adverse conditions which contain both stationary and non-stationary noise. In the proposed method, both discrete-mixture HMMs (DMHMMs) and continuous-mixture HMMs (CMHMMs) are used as acoustic models. In the DMHMM, subvector quantization is used i...

متن کامل

Discrete-Mixture HMMs-based Approach for Noisy Speech Recognition

It is well known that the application of hidden Markov models (HMMs) has led to a dramatic increase of the performance of automatic speech recognition in the 1980s and from that time onwards. In particular, large vocabulary continuous speech recognition (LVCSR) could be realized by using a recognition unit such as phones. A variety of speech characteristics can be modelled by using HMMs effecti...

متن کامل

Reviving discrete HMMs: the myth about the superiority of continuous HMMs

Despite what is generally believed, we have recently shown that discrete-distribution HMMs can outperform continuousdensity HMMs at significantly faster decoding speeds. Recognition performance and decoding speed of the discrete HMMs are improved by using product-code Vector Quantization (VQ) and mixtures of discrete distributions. In this paper, we present efficient training and decoding algor...

متن کامل

Self-organization in mixture densities of HMM based speech recognition

In this paper experiments are presented to apply Self-Organizing Map (SOM) and Learning Vector Quantization (LVQ) for training mixture density hidden Markov models (HMMs) in automatic speech recognition. The decoding of spoken words into text is made using speaker dependent, but vocabulary and context independent phoneme HMMs. Each HMM has a set of states and the output density of each state is...

متن کامل

A continuous density interpretation of discrete HMM systems and MMI-neural networks

The subject of this paper is the integration of the traditional vector quantizer (VQ) and discrete hidden Markov models (HMM) combination in the mixture emission density framework commonly used in automatic speech recognition (ASR). It is shown that the probability density of a system that consists of a VQ and a discrete classifier can be interpreted as a special case of a semicontinuous mixtur...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Computer Speech & Language

دوره 14  شماره 

صفحات  -

تاریخ انتشار 1999